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ABSTRACT

Recent advances in metabolomics allow for more objective assessment of contemporary food exposures, which have been proposed as an
alternative or complement to self-reporting of food intake. However, the quality of evidence supporting the utility of dietary biomarkers as valid
measures of habitual intake of foods or complex dietary patterns in diverse populations has not been systematically evaluated. We reviewed
nutritional metabolomics studies reporting metabolites associated with specific foods or food groups; evaluated the interstudy repeatability
of dietary biomarker candidates; and reported study design, metabolomic approach, analytical technique(s), and type of biofluid analyzed. A
comprehensive literature search of 5 databases (PubMed, EMBASE, Web of Science, BIOSIS, and CINAHL) was conducted from inception through
December 2020. This review included 244 studies, 169 (69%) of which were interventional studies (9 of these were replicated in free-living
participants) and 151 (62%) of which measured the metabolomic profile of serum and/or plasma. Food-based metabolites identified in ≥1 study
and/or biofluid were associated with 11 food-specific categories or dietary patterns: 1) fruits; 2) vegetables; 3) high-fiber foods (grain-rich); 4) meats;
5) seafood; 6) pulses, legumes, and nuts; 7) alcohol; 8) caffeinated beverages, teas, and cocoas; 9) dairy and soya; 10) sweet and sugary foods; and
11) complex dietary patterns and other foods. We conclude that 69 metabolites represent good candidate biomarkers of food intake. Quantitative
measurement of these metabolites will advance our understanding of the relation between diet and chronic disease risk and support evidence-
based dietary guidelines for global health. Adv Nutr 2021;12:2333–2357.
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Introduction
Diet plays an important role in modulating the risk of chronic
diseases, including obesity, diabetes, cardiovascular disease,
and certain cancers (1). Food intake in epidemiological
studies has traditionally been assessed using self-reported
and often memory-based approaches, including 24-h dietary
recalls, weighted food diaries, or FFQs. The reliability and va-
lidity of these tools have been questioned due to the presence
of potentially serious systematic and random measurement
errors (2, 3). Errors such as misreporting of total energy
intake and food portion sizes by 30–88% (4, 5) have hindered
efforts to disentangle diet–disease relations. During the past
decade, metabolomics has emerged as a valuable tool for
revealing changes in metabolic profiles induced by recent or
long-term/habitual diets (6, 7). High-throughput platforms
for metabolomics enable comprehensive characterization of
low-molecular-weight metabolites in biological samples, and

they offer a complement (or, in some cases, an alternative)
to self-report tools for objective assessment of “true” food
exposures. Metabolomic studies may also better characterize
dose–response relations, which would be an advance over
FFQs because FFQs generally offer sufficient precision only
to distinguish high from low consumers of food and food
groups varying considerably across populations (8).

The primary focus of nutritional metabolomics has been
the discovery of specific metabolites associated with food
consumption and its impact on chronic disease risk. Such
studies have led to the discovery of atherogenic trimethy-
lamine N-oxide (TMAO), a metabolite produced by the gut
microbiome from dietary nutrients such as choline, betaine,
and l-carnitine that are prevalent in eggs, red meat, and
fish (9, 10). The ability to discriminate metabolites of foods
in a robust and generalizable manner depends on intrinsic
factors such as characteristics of the study population (e.g.,
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genetics, ethnicity, food habits) and extrinsic factors such
as quantity and duration of food exposure. This problem
is further exacerbated because there is no clear consen-
sus on the choice of optimal study designs, sample size,
metabolomic approach, biospecimen type, and methods used
for metabolite identification and quantification (11).

The two main analytical techniques used in metabolomics
are MS and NMR; the latter method is highly robust,
requires minimal sample handling, but is less sensitive.
In contrast, MS-based approaches are usually preceded by
more extensive sample preparation and chromatographic
separations based on LC, GC, or capillary electrophoresis
for broader metabolome coverage with improved selectivity,
including isomer resolution (12, 13). Recent advances in
high-resolution MS, particularly the implementation of stan-
dardized LC-MS methods, have made it possible to detect
thousands of molecular features when performing non-
targeted metabolomics for hypothesis generation; however,
rigorous data-filtering approaches are needed to identify and
authenticate metabolites while reducing data set redundancy
and artifact signals to prevent false discoveries (8, 14, 15). On
the other hand, targeted metabolomics is also widely used to
quantify a specified list of known metabolites for hypothesis
testing using validated analytical methods. Alternatively,
both targeted and nontargeted strategies using more than
a single analytical platform are increasingly used in large-
scale metabolomic studies depending on sample volume
requirements, sample throughput, and operational costs.

There are several thousand low-molecular-weight com-
pounds derived from foods. The Food Biomarker Alliance is
a joint initiative across 11 countries aimed at discovery and
validation of dietary biomarkers (http://foodmetabolome.
org/foodball). The Food Database (FooDB) (https://foodb.
ca) is the most comprehensive database with >70,000
metabolites derived from foods and food constituents (16).
Also, Exposome-Explorer (http://exposome-explorer.iarc.fr)
is a manually curated database of exposome chemicals
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including dietary and pollutant biomarkers (17). Although
these databases are comprehensive and useful, it is challeng-
ing for the scientific community to critically appraise and
classify robust dietary biomarkers in a rapidly evolving field.
Furthermore, recent nutritional metabolomic reviews do not
distinguish between health/disease states of participants, and
thus disease status may confound the association between
dietary intake and their biomarkers (18, 19).

The purpose of this review is to 1) to generate a
comprehensive list of metabolites associated with individual
food and food groups in apparently healthy individuals; 2)
report on the study designs, metabolomic approaches, and
biospecimen used; and 3) rate the evidence based on the
interstudy repeatability and study design.

Methods
A comprehensive literature search was developed in collabo-
ration with an information scientist. We searched MEDLINE
through OVID, EMBASE, Web of Science, BIOSIS, and
CINAHL and included published articles from inception
until December 2020. We used a comprehensive search
strategy including a combination of medical subject heading
terms and keywords related to study design, population,
individual foods and food groups, and metabolomics. For the
details of our search strategy, see Supplemental Methods.
References of the included studies were manually searched
to identify any further relevant studies. Search results from
all databases were merged, and duplicates were removed with
the use of EndNote citation manager (version X9; Thomson
Reuters). Articles were initially screened based on title and/or
abstract, and full text of potential articles was retrieved
and evaluated independently by 2 reviewers (TR and SMA).
Any disagreement was resolved through discussion, and
if necessary, a third investigator (RJdS) made the final
decision.

Eligibility criteria
Studies were eligible to be included in our review if they
1) were conducted in healthy adults or children of any sex
or ethnicity; 2) used nontargeted or targeted approaches to
identify metabolites of individual foods (e.g., oranges or red
meat), complex dietary patterns (e.g., Mediterranean diet or
meat-based diet), and/or specific nutrients or nonnutrients
(e.g., trans fats or carotenoids); and 3) examined the relation
(observational studies) or the effect (intervention studies) of
food on metabolites primarily in serum, plasma, or urine
samples. We restricted the results to individual foods and
food groups but excluded dietary supplements, given that
we were interested in reporting metabolites derived from
food intake. We excluded studies 1) that had examined food
intake in conjunction with other interventions or lifestyle
changes such as weight loss to ensure that a biomarker
is specific to food and not some other intervention, 2)
without a control group, and 3) that enrolled participants
with existing disease to ensure that identified biomarkers
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FIGURE 1 PRISMA flow diagram of the literature search process. PRISMA, Preferred Reporting Items for Systematic Reviews and
Meta-Analyses.

are not a result of a pathologic process or pharmacological
intervention.

Study selection criteria
We identified 14,179 records across the 5 databases, and
12,177 remained after removal of duplicates (Figure 1). The
number of potentially relevant studies narrowed to 539 after
title and abstract screening. After full-text review, a total
of 244 studies remained eligible and were included in this
systematic review.

Data extraction and analysis
We extracted information regarding publication details,
including name of first author and year of publication, and
study characteristics, including age, country, type of study

(e.g., feeding study or cross-sectional study), sample size,
length of follow-up, specification of analytical technique, bio-
logical sample (urine or blood), exposure and/or comparator
details, method of dietary assessment (only for observational
studies), and all resulting metabolites following diet exposure
(Supplemental Tables 1 and 2). Given the large number
and chemical diversity of food metabolites, a data-reduction
approach was applied in which only those metabolites that
were identified in ≥2 different studies and/or biofluids
(blood and urine) are presented and discussed in this
review.

Assessing level of evidence
We developed a scoring system to rate the evidence for each
metabolite as a candidate biomarker of food intake into 1 of 3
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mutually exclusive categories: good, fair, or poor. The rating
is based on empirical evidence of interstudy repeatability and
study design.

Repeatability
Metabolites identified in >1 study were assigned a score of
2 points for each of these studies that was an interventional
study plus 1 additional point for each observational study.
Only metabolites that were replicated were assigned a score.
The following algorithms were used to assess replication:

� Two independent publications: A metabolite identified
by 1 observational study and 1 interventional study
was assigned a total score of 3 points (1 × 1 point for
observational study and 1 × 2 points for interventional
study).

� A single publication reporting results from 2 indepen-
dent cohorts/studies of a metabolite of a food, and both
were congruent, was assigned a score of 3 points (1 × 1
point for observational study and 1 × 2 points for
interventional study).

� Two different biological fluids for the same cohort
(urine and blood): For example, a biomarker identified
in both urine and blood sample was assigned a score of
2 points if identified in an observational study (1 × 1
[urine] + 1 × 1 [blood]) and a score of 4 points if
identified in an interventional study (1 × 2 [urine] +
1 × 2 [blood]).

Thus, the lowest score for a replicated metabolite was
2 points, classified as poor evidence; a score of 3–4 was
considered as fair evidence, and a score of ≥5 points was
considered good evidence (Table 1). Although this scoring
system has not been published previously in the literature, we
have carefully designed it to be a tool for assessing the extent
of evidence of metabolites as related to recent or habitual
food consumption. Certain metabolites recently recognized
in the scientific community as “strong” biomarkers of food
intake (BFIs), such as proline betaine for citrus fruits,
were also correctly classified as good using our scoring
system.

Results
This review included 244 studies, 169 (69%) of which were
interventional studies (9 of these were replicated in free-
living participants) and 101 (41%) of which measured the
metabolomic profile of urine, plasma (n = 64), serum
(n = 46), or both plasma/serum and urine samples (n = 41).
A total of 7273 individuals contributed data to 169 in-
terventional studies (average of 42 participants per study),
and 79,256 individuals participated in 84 observational
studies (average of 922 participants per study). Most studies
focused on the adult population, with only 2 interven-
tion and 7 observational studies including children and/or
adolescents. All but 2 intervention and 3 observational
studies did not provide information on age of participants,
and nearly all studies reported sex-related information.
The dietary biomarkers were measured in blood (plasma

or serum) and/or urine sample and were detected using
LC-MS (mainly with either reversed-phase or hydrophilic
interaction modes), GC-MS, 1H-NMR, or other analytical
methods (e.g., flow-injection electrospray ionization–MS,
capillary electrophoresis–MS, or inductively coupled plasma
MS) (Supplemental Figure 1). Each metabolite was scored
based on the interstudy repeatability and study design score
system described previously. As expected, proline betaine
was classified to have good evidence (score >5) for intake of
citrus fruits because it appeared in 2 interventional studies
(score = 4) and 5 observational studies (score = 5), for a
combined score of 9. Meanwhile, ergothioneine for intake
of mushrooms appeared in 2 observational studies and was
classified to have poor evidence (score = 2). Overall, our
review concluded that 69 metabolites are good, 161 are fair,
and 48 are poor biomarkers of foods.

Most food-derived exogenous compounds are biotrans-
formed into ≥1 metabolites following primary and sec-
ondary metabolism and have an optimal detection window
within a 24-h period depending on dose and frequency
of food intake (mostly with urine sample), although some
extend to ≥48 h. In this section, we discuss robust dietary
biomarkers associated with intake of specific foods or
complex dietary patterns. Metabolites identified in >1 study
or biofluid were grouped into the following 11 categories:
1) fruits; 2) vegetables; 3) high-fiber (grain-rich); 4) meats;
5) seafood; 6) pulses, legumes, and nuts; 7) alcohol; 8)
caffeinated beverages, teas, and cocoas; 9) dairy and soya; 10)
sweet and sugary foods; and 11) complex dietary patterns and
other foods.

Fruits
A total of 29 subcategories of fruits were identified in this
systematic review, of which 9 categories had reported ≥1
metabolite that was replicated (Table 1, Figure 2A). Metabo-
lites for intake of fruits were analyzed in 2 interventional
(20, 21) and 8 observational studies (22–29), fruit juices
in 1 interventional study (20) and 3 observational studies
(22, 30, 31), citrus fruits in 3 interventional (20, 32, 33)
and 6 observational studies (22, 27, 31, 34–36), orange in 3
interventional studies (20, 33, 37) and 1 observational study
(22), orange juice in 7 interventional studies (21, 38–43)
and 1 observational study (34), apple in 5 interventional
(20, 44–47) and 2 observational studies (22, 45), banana
in 1 interventional study (48) and 4 observational studies
(31, 34, 48, 49), strawberry in 4 interventional studies (50–
53), and cranberry juice in 4 interventional studies (54–
57). Several studies reported higher concentration of proline
betaine with intake of fruits in general (21, 24–26). Proline
betaine was also identified as the most frequent biomarker
of citrus fruit (20, 22, 27, 31, 32, 34) and orange juice
(21, 34, 38, 40), fruit juice (22, 30, 31), and the only
metabolomic signature of orange fruit (22, 33, 37). Proline
betaine was specific to the habitual consumption of citrus
fruit or fruit juice due to its high natural abundance with
appreciable amounts found in less commonly eaten foods,
such as Stachys affinis or Chinese artichoke (58). In addition,
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TABLE 1 List and scoring of food metabolites replicated in the literature1

Score

Food name Good (≥5) Fair (3–4) Poor (2)

Fruits Proline betaine (5)2 Hippuric acid (4)2

Strawberry Pelargonidin glucuronide (6)
Apple Epicatechin sulfate (4)

Hydroxyphenylvaleric acid sulfate (4)
Xylose (3)2

Banana 3-Methoxytyramine sulfate (3)2

Dopamine sulfate (3)2

Methoxyeugenol glucuronide (3)2

Salsolinol sulfate 1 (3)2

Fruit juice Proline betaine (4)
N-methylproline (3)
Scyllo-inositol (3)

Cranberry juice Ferulic acid sulfate (4)
Sinapic acid (4)
Quinic acid (4)
Hippuric acid (4)

Orange juice Proline betaine (7)2

Hippuric acid (6)
4′-Hydroxyhippuric acid (6)
3′-Hydroxyhippuric acid (6)
4-Hydroxyphenylacetic acid (6)

3-(3′-Hydroxy-4′-methoxyphenyl)hydracrylic acid (4)
3-(3′-Hydroxy-4′-methoxyphenyl)propionic acid (4)
3-(4′-Methoxyphenyl)propionic acid-3′-sulfate (4)

Orange Proline betaine (5)2

Citrus fruit Proline betaine (9)2 N-methylproline (4)
Naringenin (3)2

Hesperetin (3)2

Chiro-inositol (3)
Scyllo-inositol (3)

Broccoli Sulforaphane (8)
Sulforaphane N-acetylcysteine (8)
Sulforaphane cysteine (8)
Isothiocyanates (6)

Sulforaphane cysteinylglycine (4)
Erucin-cysteine (4)
Erucin-N-acetylcysteine (4)

Broccoli sprouts Sulforaphane (8) Erucin (4)
Cruciferous vegetables S-Methyl-L-cysteine-sulfoxide (3)2

Green leafy vegetables CMPF
Mushrooms Ergothioneine
High-fiber (grain-rich) Alkylresorcinols (8)

3-(3,5-DHPPA (5)2
2-Aminophenol sulfate (4)2

DHBA (3)2
Daidzein
Genistein

Whole-grain rye bread Alkylresorcinols (4)
DHPPA sulfate (3)2

Meat Creatinine (6)2 Creatine (5)2

O-acetyl-L-carnitine (3)2

4-hydroxyproline (3)2

Glutamine (3)2

Chicken/poultry 3-Methylhistidine (11)2 Anserine (4)2

Carnosine (4)2

O-acetyl-L-carnitine (3)2

Pyroglutamine3

Processed meat O-acetyl-L-carnitine (6)2

Red meat O-acetyl-L-carnitine (6)2 TMAO (4)
Carnosine (4)2

Carnitine (3)2

Anserine (3)2

Seafood DHA (22:6n–3) (5) CMPF (3)
Eicosapentaenoic acid (20:5n–3) (3)

Docosapentaenoic acid
(22:5n–3)

Fatty fish DHA (22:6n–3) (5)2 Eicosapentaenoic acid (20:5n–3) (4)2

Fish TMAO (19)2

DHA (22:6n–3) (12)2

CMPF (7)2

Creatine (7)2

Eicosapentaenoic acid (20:5n–3)
(7)2

Dimethylamine (5)2

1-Methylhistidine (4)
1,2,3,4-Tetrahydro-β-carboline-3-carboxylic acid (4)
Arsenobetaine (4)
1-Docosahexaenoylglycero-phosphocholine (3)
Docosapentaenoic acid (22:5n–3) (3)2

Acetylcarnitine (3)2

Lysine
Methionine
Tryptophan
Tyrosine

(Continued)
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TABLE 1 (Continued)

Score

Food name Good (≥5) Fair (3–4) Poor (2)

Seafood (lean) TMAO (4)
Seafood and plant

protein
DHA (22:6n–3)

Shellfish CMPF (4) 2-Hydroxybutyrate
Pulses/legumes/nuts Trigonelline (4)

3-Methylhistidine (4)
Dimethylglycine (4)
Trimethylamine (4)
Lysine (4)

Dry-bean–enriched diet Trigonelline (4)
Pipecolic acid (4)
S-methylcysteine (4)

Nuts (mixed) Tryptophan betaine (4) 4-Vinylphenol sulfate
Peanuts Tryptophan betaine (3)

4-Vinylphenol sulfate (3)
Alcohol 4-Androsten-3β-diol disulfate (3)

2-aminobutyrate (3)
α-Hydroxyisovalerate
β-Hydroxyisovalerate
5α-Androstan-3β-diol

disulfate
2-Hydroxybutyrate
4-Methyl-2-

oxopentanoate
Pipecolate
Docosapentaenoic acid

(22:5n–3)
Stearidonate (18:4n–3)
Piperine
Ethyl glucuronide
Palmitoleate (16:1n–7)
Dihomo-linoleate

(20:2n—6)
Malate
17β-Diol disulfate
17β-Diol disulfate 1

Liquor Ethyl glucuronide (4)
Dealcoholized red wine Methylgallic sulfate (6)

�(Epi)catechin glucuronides (6)
3-Hydroxyphenylacetic acid (6)
p-Coumaric acid (6)

Ethylgallate sulfate (4)
Ethylgallate (glucuronide 1) (4)
Ethylgallate (glucuronide 2) (4)
�Methyl(epi)catechin glucuronides (4)
�Dihydroxyphenyl-γ -valerolactone glucuronide (4)
�Dihydroxyphenyl-γ -valerolactone sulfates (4)
�Methoxy-hydroxyphenyl-γ -valerolactone glucuronide (4)
2,4-Dihydroxybenzoic acid (4)
2,6-Dihydroxybenzoic acid (4)
2,5-Dihydroxybenzoic acid (4)
3,5-Dihydroxybenzoic acid (4)
4-Hydroxybenzoic acid (4)
3-Hydroxybenzoic acid (4)
Gallic acid (4)
Methylgallic acid (4)
2-Hydroxyphenylacetic acid (4)
Caffeic acid (4)
Ferulic acid (4)
3-(3-Hydroxyphenyl) propionic acid (4)
Enterolactone (4)
Pyrogallol (4)
Syringic acid (4)
Ethylgallate (4)
3,4-Dihydroxyphenylacetic acid (4)
Dihydrocaffeic acid (4)
(Epi)catechin sulfates (4)
Enterolactone (4)

(Continued)
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TABLE 1 (Continued)

Score

Food name Good (≥5) Fair (3–4) Poor (2)

Wine Ethyl glucuronide (3) 2,3-Dihydroxyisovalerate
2,3-Butanediol
Scyllo-inositol

Red wine �Methyl(epi)catechin
glucuronides (6)

Methylgallic acid sulfate (5)2

Gallic acid (4)
Methylgallic acid (4)
3-Hydroxyphenylacetic acid (4)
p-Coumaric acid (4)
(Epi)catechin glucuronide (4)
DHPV (4)
DHPV 2 (4)
�DHPV glucuronides (4)
Ethylgallate (3)2

Cocoa 3-Methylxanthine (7)2

3-Methyluric acid (5)2

7-Methylxanthine (5)2

Theobromine (5)2

Epicatechin-glucuronide (4)
5-(3′ ,4′-Dihydroxyphenyl)-γ -valerolactone glucuronide (3)2

Coffee Paraxanthine (13)2

Caffeine (13)2

1-Methylxanthine (10)2

Quinate (9)2

Theophylline (10)2

Hippuric acid (9)2

Trigonelline (9)2

5-Acetylamino-6-amino-3-
methyluracil (8)2

Dihydroferulic acid (8)
1,7-Dimethylurate (6)2

1,3,7-Trimethylurate (6)2

3-Hydroxyhippurate (6)2

1,3-Dimethylurate (7)2

Catechol sulfate (5)2

Dihydrocaffeic acid (6)
Caffeic acid (7)2

Ferulic acid (5)2

Feruloylquinic acid (5)2

Isoferulic acid (6)2

N-(2-furoyl)glycine (5)2

Theobromine (5)2

3-Caffeoylquinic acid (4)
3-Methyl catechol sulfate (4)2

3-Methylxanthine (4)2

4-Caffeoylquinic acid (4)
Dihydrocaffeic acid-3-O-sulfate (4)
1-Methylurate (4)2

3-Hydroxypyridine sulfate (3)2

7-Methylguanine (3)2

Caffeic acid sulfate (3)2

Citraconate (3)2

Cyclo(Leu–Pro) (3)
Gallic acid (3)2

Kynurenic acid (3)2

3,7-Dimethyluric acid

Green tea Hippuric acid (10) O-methyl-epicatechin-O-sulfates (4)
O-me-epigallocatechin-O-glucuronide (4)
(–)-Epigallocatechin-3-gallate (4)

Black tea 4-O-methylgallic acid (5)2 Hippuric acid (4)
Chocolate Theobromine (7)2

7-Methyluric (5)2
7-Methylxanthine (4)2

6-AMMU (4)
3,7-Dimethyluric acid (3)2

Dark chocolate 4-Hydroxyphenyl acetate (4)
Sweet and sugary

beverages
Citrulline (3)2

Taurine (3)2

Isocitrate (3)2

Carbon isotopic
signatures (δ13C)

Dairy Pantothenic acid (vitamin
B-5)

Butter 10-Undecenoic acid (11:1n–1) (3) Pentadecanoate (15:0)
Methyl palmitic isomers

Cheese 3-Phenyllactic (4)2

Proline (4)2

Methionine (4)2

Milk Galactonic acid (5)2 Galactose (4)
Lactose (4)
Galactono-1,5-lactone (4)
Urea (4)

Uridine

(Continued)
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TABLE 1 (Continued)

Score

Food name Good (≥5) Fair (3–4) Poor (2)

High-soy diet Daidzein (9)2

Genistein (8)2

O-DMA (5)2

Equol (4)
Glycitein (3)

Total isoflavonoids

Soy-based drink Pinitol (4) 4-Ethylphenylsulfate
Soy-based cheese Daidzein (4)

Genistein (4)
Whey Leucine/isoleucine (4)
Average Danish Diet Theobromine (4)

Proline betaine (4)
DASH diet β-Cryptoxanthin (3)2

Fruits and vegetables Hippuric acid (5)2 β-Carotene (3)2

Genistein (3)2

Total carotenoid (3)2

Healthy Eating Index CMPF (3)2

Eicosapentaenoic acid (20:5n–3) (3)2

Hippuric acid (3)2

Docosahexaenoylcholine
DHA (22:6n–3)
Carotene diol
Ergothioneine

High-carotenoid diet α-Carotene (3)2

β-Carotene (3)2

Total carotenoids (3)2

Mediterranean diet DHA (22:6n—3) (4)2 CMPF
New Nordic Diet TMAO (6) Hippuric acid (4)
Vegetarian Lysine

Methionine
Tryptophan
Tyrosine

Vegan Alanine (3)2

Glycine (3)

1Metabolites identified in ≥2 studies. Interstudy repeatability score: interventional studies (2×); observational studies (1×)—example: metabolite found in 2
interventional studies and 1 observational study will have a score of 5. Good = ≥5; fair = 3–4; poor = 2. m/z for good metabolites only reported using
untargeted analysis: proline betaine for orange (m/z = 144.0988); trigonelline (m/z = 138.0550), 1,7-dimethylurate (m/z = 195.0524), 1,3,7-trimethylurate
(m/z = 209.068), 3-hydroxyhippurate (m/z = 194.0459), 1,3-dimethylurate (m/z = 197.0669), and catechol sulfate (m/z = 188.9863) for coffee; theobromine for
chocolate (m/z = 181.0720); and TMAO for NND (m/z = 76.0757). CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoate; DHBA, 3,5-dihydroxybenzoic acid;
DHPPA, 3-(3,5-dihydroxyphenyl)-1-propanoic acid; DHPV, dihydroxyphenyl-γ -valerolactone; NND, New Nordic Diet; O-DMA, O-desmethylangolensin; TMAO,
trimethylamine N-oxide; 6-AMMU, 6-amino-5-[N-methylformylamino]-1-methyluracil.
2Robust biomarker (i.e., reported using both interventional and observational study design).
3Inverse association.

studies reported higher level of hippuric acid with intake of
fruits (21, 24, 25), orange juice (39, 42, 43), and cranberry
juice (55, 56). Other metabolites (including biotransformed
hippuric acid metabolites excreted in urine) identified were
3′-hydroxyhippuric acid (39, 42, 43), 4′-hydroxyhippuric
acid (41–43), 4-hydroxyphenylacetic acid (39, 41, 43), 3-
(3′-hydroxy-4′-methoxyphenyl)hydracrylic acid (41, 42), 3-
(3′-hydroxy-4′-methoxyphenyl)propionic acid (42, 43), and
3-(4′-methoxyphenyl)propionic acid-3′-sulfate (41, 43) for
orange juice; naringenin (20, 35), hesperetin (20, 35), N-
methylproline (22, 27, 34), chiro-inositol (22, 27), and scyllo-
inositol (22, 27) for citrus fruits; epicatechin sulfate (45,
47), hydroxyphenyl valeric acid sulfate (47), and xylose (45)
for apple; and N-methylproline, chiro-inositol, and scyllo-
inositol for intake of fruit juice (22, 30, 31). Pelargonidin,
the main anthocyanin highly specific to strawberries, was
the only dietary biomarker reported at high concentration
after intake of strawberries (50, 51, 53); 3-methoxytyramine
sulfate was the only dietary biomarker reported at high
concentration after intake of bananas (34, 48); and 1 study

reported higher urine and plasma concentration of ferulic
acid sulfate and sinapic acid (54), and quinic acid (55, 56)
following intake of cranberry juice.

Vegetables
Five of the total 20 vegetable subcategories had identified ≥1
replicated metabolite as a dietary biomarker (Table 1, Figure
2B). Metabolites associated with intake of broccoli were
analyzed in 5 interventional studies (59–63), broccoli sprouts
in 4 interventional studies (64–67), cruciferous vegetables
in 2 interventional (68, 69) and 3 observational studies (22,
27, 34), green leafy vegetables in 3 observational studies (22,
27, 31), and mushrooms in 2 observational studies (31, 34).
Studies reported increased concentration of sulforaphane as
the frequently identified metabolite, which is derived from
hydrolysis of glucosinolates by myrosinase, to be associated
with intake of broccoli (62, 63) and broccoli sprouts (64, 65,
67). In addition, sulfur-containing isothiocyanate exogenous
compound prevalent in cruciferous vegetables was another
more frequently identified metabolite for intake of broccoli
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FIGURE 2 Metabolites identified from (A) fruits, (B) vegetables and high-fiber (grain-rich) foods and (C) seafood by number of studies,
type of study design, and type of biofluid.

(60, 61), as well as related sulforaphane metabolites/thiol
conjugates excreted in urine such as sulforaphane cysteinyl-
glycine (62), sulforaphane cysteine (62, 63), and sulforaphane
N-acetylcysteine (62, 63). In addition, a higher concentration
of erucin was found in urine or blood with intake of broccoli

sprouts (65); higher concentrations of erucin-cysteine and
erucin N-acetylcysteine were found with intake of broc-
coli (63); and S-methyl-l-cysteine-sulfoxide, 3-carboxy-4-
methyl-5-propyl-2-furanproponante (CMPF), and ergoth-
ioneine were the only metabolites associated with cruciferous
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vegetables (34, 69), green leafy vegetables (27, 31), and
mushrooms (31, 34), respectively.

High-fiber (grain-rich) foods
The subcategories of high-fiber (grain-rich) foods and
whole-grain rye bread had identified ≥1 metabolite that
was replicated (Table 1, Figure 2B). Metabolites for a high-
fiber diet were examined in 6 interventional (70–75) and 9
observational studies (22, 23, 26, 29, 31, 76–79) and whole-
grain rye bread in 7 interventional studies (74, 80–85) and
1 observational study (86). Higher concentrations of urinary
and blood alkylresorcinols, well-known phenolic lipids that
are prevalent in whole-grain wheat and rye, and 3-(3,5-
dihyroxyphenyl)-1-propanoic acid (DHPPA), which can be
measured as free molecules or as glucuronide or sulfonate
conjugates resulting from phase I and II metabolism, were
reported with intake of a high-fiber diet (72–75) and whole-
grain rye bread (80, 81, 86). Studies reported higher intake
of higher dietary fiber to be associated with greater urinary
excretion and blood concentration of 3,5-dihydroxybenzoic
acid (DHBA) (75, 77), 2-aminophenol sulfate (26, 70, 79), as
well as daidzein (23, 76) and genistein (23, 76). The latter
2 phytochemicals are not specific to fiber intake because
they are also prevalent in soya products, which have long
been associated with habitual dietary patterns and cancer and
chronic disease risk (87).

Seafood
Six of the total 8 subcategories had ≥1 metabolite that was
replicated (Table 1, Figure 2C). Metabolites for intake of
seafood in general were identified in 5 observational studies
(13, 26, 30, 31, 88), fatty fish in 1 interventional study (89) and
3 observational studies (90–92), fish in 9 interventional (69,
93–99) and 15 observational studies (22, 24, 27, 31, 34, 52,
88, 90, 94, 99–105), lean seafood in 2 interventional studies
(106, 107), seafood in combination with plant protein in 2
observational studies (26, 108), and shellfish in 4 observa-
tional studies (22, 27, 34, 105). DHA (22:6n–3), an essential
omega-3 fatty acid, was the most frequently reported dietary
biomarker of seafood in general (13, 26, 30, 31, 88), fatty
fish (89–92), and seafood in combination with plant protein
(26, 108). TMAO (a gut microbiota-generated metabolite)
was the most frequently reported metabolite associated with
intake of fish (52, 69, 94, 97–99, 105). DHA was the second
most frequently reported metabolite associated with fish
intake (22, 27, 31, 34, 90, 94, 95, 97, 102), and CMPF for
seafood in general (26, 30, 31), and shellfish (22, 27, 34).
Furthermore, 2 other ω-3 fatty acids, docosapentaenoic acid
(22:5n–3) and eicosapentaenoic acid (20:5n–3), were both
reported higher after intake of seafood (13, 26, 30, 31) and
fish (22, 27, 31, 34, 90, 95), and a higher concentration of
eicosapentaenoic acid (20:5n–3) was reported with intake
of fatty fish (89–91). Also, elevated levels of CMPF (22,
27, 31, 34, 96), creatine (97, 98, 105), and dimethylamine
(69, 99, 105) were associated with intake of fish, and an
elevated concentration of TMAO was associated with intake
of lean seafood (106, 107). Few other metabolites were

replicated for intake of fish. Another metabolite for shellfish
was 2-hydroxybutyrate (22), an endogenous metabolite also
associated with threonine metabolism and oxidative stress
(109). We therefore do not consider it a specific biomarker for
shellfish.

Meats
Six meat subcategories were identified in this systematic
review, of which 4 categories of overall meat intake,
chicken/poultry, processed meat, and red meat had reported
≥1 metabolite that was replicated (Table 1, Figure 3A).
Examination of potential metabolites for meats was analyzed
in 2 interventional (93, 110) and 7 observational studies
(24, 31, 90, 101, 104, 111, 112), poultry/chicken in 4
interventional (69, 94, 113, 114) and 6 observational studies
(22, 27, 31, 34, 94, 114), processed meat in 1 interventional
study (94) and 5 observational studies (22, 27, 31, 94, 115),
and red meat in 5 interventional (94, 114, 116–118) and 7
observational studies (22, 27, 34, 94, 114, 115, 119). The most
frequently identified metabolites include creatinine (93, 104,
110, 112) for meat, which was first identified a few decades
ago and is degraded from creatine during cooking; O-acetyl-
l-carnitine for red meat (22, 94, 115, 118); and a modified
amino acid, 3-methylhistidine, for chicken/poultry (34, 69,
94, 113, 114), which has long been used as a biomarker for
muscle protein turnover. Other replicated markers include
4-hydroxyproline (31, 93), glutamine (110, 112), creatine
(24, 110, 112), and O-acetyl-l-carnitine (104, 110) for meat;
TMAO (116), anserine (114), carnosine (94, 114), and l-
carnitine (22, 116) specifically for red meat; O-acetyl-l-
carnitine for processed meat (22, 94, 115); and higher
anserine and carnosine (94, 114) and lower pyroglutamine
level (27, 31) for chicken/poultry.

Pulses, legumes, and nuts
Four of the 7 subcategories including mixes of
pulses, legumes, nuts or dry-bean–enriched diets,
mixed nuts, and peanuts had reported ≥1 replicated
metabolite (Table 1, Figure 3A). Metabolites for intake
of pulses/legumes/nuts in general were analyzed in 3
interventional studies (120–122) and 4 cross-sectional
studies (23, 27, 123, 124), dry-bean–enriched diet in
2 interventional studies (125, 126), mixed nuts in 1
interventional study (127) and 3 observational studies (22,
26, 34), and peanuts in 4 observational studies (27, 34, 123,
128). Studies reported higher levels of tryptophan betaine
(an indole alkaloid) and 4-vinylphenol sulfate (a xenobiotic
associated with benzoate metabolism) with intake of mixed
nuts (22, 26, 34) and peanuts (27, 34, 128). In addition,
an increased concentration of a vitamin B-3 metabolite,
trigonelline, was reported with intake of pulses/legumes/nuts
(120) and dry-bean–enriched diet (125, 126). Other dietary
biomarkers include 3-methylhistidine, dimethylglycine,
trimethylamine, and lysine for pulses/legumes/nuts (120)
and pipecolic acid and S-methylcysteine for a dry-bean–
enriched diet (125, 126).
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FIGURE 3 Metabolites identified from (A) meats, pulses, legumes, and nuts, (B) alcohol, and (C) dealcoholized red wine by number of
studies, type of study design, and type of biofluid. 1Metabolites in lower concentration compared to control.

Alcohol
The subcategories of alcohol, liquor, wine, red wine, and
dealcoholized red wine had reported ≥1 metabolite that was
replicated (Table 1, Figure 3B, C). Metabolites for intake
of alcohol were analyzed in 12 observational studies (22,
27, 31, 34, 90, 101, 128–133), liquor in 4 observational

studies (22, 27, 31, 34), wine in 3 interventional (20, 134,
135) and 6 observational studies (22, 27, 31, 34, 136, 137),
red wine in 3 interventional (138–140) and 3 observational
studies (34, 36, 136), and dealcoholized red wine in 2
interventional studies (138, 141). Although several
metabolomic signatures were identified to be associated with
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intake of alcohol, red wine, and dealcoholized red wine, the
more frequently reported metabolites include 4-androsten-
3β-diol disulfate (27, 31, 128) and 2-aminobutyrate (31,
128, 130) for alcohol; the sum of methyl(epi)catechin
glucuronides (138, 140) for red wine; and the sum of
(epi)catechin glucuronides, 3-hydroxyphenylacetic acid,
and p-coumaric acid for dealcoholized red wine (138,
141). Additional metabolites associated with intake of
dealcoholized red wine were methylgallic sulfate, 3-
hydroxyphenylacetic acid, and p-coumaric acid (138).
In addition, a higher concentration of ethyl glucuronide, a
common secondary metabolite of ethanol excreted in urine,
was most frequently reported with intake of wine (22, 34,
137) and liquor (22, 27, 34).

Caffeinated beverages, teas, and cocoas
The subcategories of black tea, green tea, cocoa, and coffee
intake had reported ≥1 metabolite that was replicated
(Table 1, Figure 4A, B). Metabolites for intake of black
tea were analyzed in 4 interventional (20, 142–144) and 3
observational studies (31, 145, 146), green tea in 8 inter-
ventional studies (143, 144, 147–152) and 1 observational
study (146), cocoa in 6 interventional studies (153–158) and
1 observational study (159), and coffee in 10 interventional
(20, 46, 160–167) and 16 observational studies (22, 27, 30,
31, 34, 36, 136, 146, 168–175). Paraxanthine (22, 27, 30, 34,
160, 162, 170–172, 174) and 1,3,7-trimethylxanthine (coffee)
(22, 30, 34, 160, 162, 169, 171–174) were the most frequently
identified markers for coffee intake. Among many, some of
the other metabolites more frequently identified for coffee
intake include hippuric acid (formed by the conjugation
of benzoic acid with glycine) (22, 136, 162, 163, 171, 174)
and well-known coffee constituent theobromine and its
metabolites 1-methylxanthine (22, 27, 30, 34, 171, 172, 176)
and 3-methylxanthine (136, 160, 162, 172). 4-O-methylgallic
acid, a methyl ether derivative of gallic acid, and hippuric acid
were the most frequently identified metabolites for intake of
black tea (20, 142, 145) and green tea (143, 144, 147, 148,
152), respectively. Furthermore, higher levels of the well-
known coffee constituent theobromine and its metabolite
3-methylxanthine (most frequently) were associated with
intake of cocoa (153, 156, 157, 159). There were no
biomarkers for decaffeinated coffee that were reported in
≥2 studies, suggesting that the metabolites associated with
coffee may likely be metabolites of caffeine and not specific
to coffee. 1-Methyluric acid and 5-acetamido-6-amino-3-
methyluracil are also widely measured end products of
caffeine metabolism prevalent in urine that are associated
with caffeinated beverage intake in large populations (172).

Dairy
Three of the 5 subcategories including intake of dairy prod-
ucts, butter, cheese, and milk had reported ≥1 metabolite
that was replicated (Table 1, Figure 4A). Metabolites for
intake of dairy products were analyzed in 2 interventional
studies (177, 178) and 5 observational studies (26, 90, 179–
181), butter in 4 observational studies (22, 27, 31, 34),

cheese in 3 interventional studies (182–184), and milk in
5 interventional (178, 182–185) and 7 observational studies
(23, 27, 29, 34, 180, 181, 186). Galactonic acid (derived from
galactose being oxidized via galactono-1,5-lactone) for milk
(34, 182, 183) and 10-undecenoic acid (11:1n–1) for butter
intake (27, 31, 34) were identified as the most frequently
reported dietary biomarkers. A small number of other
metabolites were also reported in higher concentrations for
these subcategories, including galactose (182, 183), lactose
(182, 183), galactono-1,5-lactone (182, 183), uridine (181,
186), and urea for milk (184, 185) and pentadecanoate
(15:0) and methyl palmitic acid isomers for butter (27, 31).
In addition, studies reported higher concentrations of 3-
phenullactic (182, 183), proline (182, 183), and methionine
(183, 184) for cheese intake and a higher concentration of
pantothenic acid (vitamin B-5) (179, 181) for dairy products.

Sweet and sugary foods
The subcategories of chocolate, dark chocolate, and sweet
and sugary beverages had reported ≥1 replicated metabolite
(Table 1, Figure 4C). Metabolites for intake of chocolate were
analyzed in 2 interventional (33, 52) and 4 observational
studies (27, 31, 34, 36), dark chocolate in 2 interventional
studies (187, 188), and sweet and sugary beverages in 1
interventional study (189) and 7 observational studies (22,
24, 27, 189–192). Although several metabolomic signatures
were associated with intake of chocolate, theobromine (an
alkaloid from cocoa plant) (27, 31, 33, 34, 52) followed by its
endogenous metabolite 7-methyluric acid (33, 34, 52) were
the most frequently reported metabolites. 4-Hydroxyphenyl
was the only biomarker reported in higher concentration for
intake of dark chocolate (187, 188). Furthermore, citrulline,
taurine, isocitrate, carbon isotopic signatures (δ13C) were
reported in higher concentration after intake of sweet and
sugary beverages (189–191). Various artificial sweeteners can
also serve as specific/exogenous biomarkers reflecting intake
of low-caloric beverages and processed foods prevalent in a
Western diet, including acesulfame K, aspartame, saccharin,
sucralose, and steviol glycoside (193).

Complex dietary patterns and other foods
A number of dietary patterns and other food subcat-
egories had identified metabolites that were replicated
(Table 1, Figure 5A, B). Metabolites for intake of the Average
Danish Diet (ADD) were analyzed in 4 interventional studies
(33, 194–196), Dietary Approaches to Stop Hypertension
(DASH) diet in 1 interventional study (197) and 2 ob-
servational studies (108, 198), Healthy Eating Index (HEI)
in 1 interventional study (96) and 3 observational studies
(26, 108, 198), Mediterranean diet in 3 interventional (199–
201) and 5 observational studies (26, 108, 198, 202, 203),
New Nordic Diet (NND) in 4 interventional studies (33,
194–196), vegetarian diet in 3 observational studies (100,
104, 204), vegan diet in 1 interventional study (205) and 3
observational studies (100, 104, 112), high carotenoid in 1
interventional study (206) and 1 observational study (207),
fruits and vegetables in 4 interventional (69, 208–210) and
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FIGURE 4 Metabolites identified from (A) dairy-based foods, teas, cocoas, (B) coffee, and (C) sweet and sugary foods by number of
studies, type of study design, and type of biofluid.

8 observational studies (28, 30, 76, 108, 133, 168, 176, 211),
whey in 3 interventional studies (97, 185, 212), soy-based
drink in 3 interventional (178, 182, 183) and 2 observational
studies (31, 34), high-soy diet in 2 interventional (213, 214)
and 5 observational studies (23, 76, 215–217), and soy-based

cheese in 1 interventional (urine and plasma) study (218).
Elevated levels of theobromine and proline betaine were
reported for ADD (33, 194); β-cryptoxanthin for DASH diet
(108, 197); TMAO (33, 194, 196) and hippuric acid (33,
196) for NND; and CMPF (96, 108), eicosapentaenoic acid
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FIGURE 5 Metabolites identified from dietary patterns and other foods by number of studies, type of study design, and type of biofluid.
DASH, Dietary Approaches to Stop Hypertension Trial.
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FIGURE 6 Number of publications in nutritional metabolomics. Note: Data presented are based on the inclusion criteria of this review.

(20:5n–3) (96, 108), and hippuric acid (96, 198) for HEI. A
higher level of DHA (22:6n–3) was found to be associated
with consumption of a Mediterranean diet (26, 108, 199). In
addition, a higher concentration of hippuric acid for fruits
and vegetables (69, 176, 208), glycine for vegan diet (100, 104,
112), common dietary isoflavones daidzein and genistein for
high-soy diet (23, 213–217) and soy-based cheese (218), and
pinitol for soy-based drink (182, 183) were identified as the
most frequently reported markers.

Discussion
This review included 244 articles (169 interventional studies,
of which 9 studies were replicated in free-living participants)
that assessed the association between metabolites measured
in common biofluids (i.e., urine, serum, or plasma) and
intake of individual food or food groups published between
1998 and 2020. Although there has been a relatively long
history of studies using a targeted approach to identify
dietary biomarkers related to known constituents of food
chemistry, the application of untargeted metabolomics only
started to gain prominence in the mid-2000s and has
greatly expanded in the past 5–10 y (Figure 6). In addition,
earlier studies were mainly interventional in design, but
the number of observational studies has increased since the
early 2000s. Given this trend and combined with recent
advances in metabolomics, the application of metabolomics
in nutritional epidemiology holds substantial promise.

Metabolites associated with foods or food groups
Based on our review, we rated the repeatability of 69
metabolites as good, 161 as fair, and 48 as poor markers of
specific foods. Specifically, results from this review indicate
that proline betaine for fruits in general, but also for orange,
orange juice, and citrus fruit, was the most repeatable

(based on interstudy repeatability and study design). In
addition, the following have good evidence and were also
highly repeatable: pelargonidin glucuronide for strawberry;
sulforaphane, sulforaphane cysteinylglycine, sulforaphane N-
acetylcysteine, and sulforaphane cysteine for broccoli; sul-
foraphane for broccoli sprouts; alkylresorcinols for high-fiber
(grain-rich) foods; creatinine for meat; 3-methylhistidine for
chicken/poultry; acetylcarnitine for red meat and processed
meat; DHA for seafood in general and fatty fish; TMAO
for fish and NND; �methyl(epi)catechin glucuronides for
red wine; methylgallic sulfate for dealcoholized red wine; 4-
O-methylgallic acid for black tea; hippuric acid for green
tea; 3-methylxanthine for cocoa; paraxanthine and caffeine
for coffee; theobromine for chocolate; galactonate for milk;
daidzein for high-soy diet; and hippuric acid for fruits and
vegetables. This subset of metabolites is consistent with
several previous reviews (18, 219–221).

It is important to mention that several other metabolites
also had good evidence (i.e., ≥5 points) but were not found
to be among the most repeated markers (i.e., not with
the most points within the good category) (Table 1). For
example, DHPPA for high-fiber (grain-rich) foods appeared
in 2 interventional studies (score: 2 × 2) and 1 observational
study (score: 1 × 1), and we can classify this to be of good
evidence (i.e., score ≥5) (Table 1, Figure 2B). However,
because alkylresorcinols appeared in 4 interventional studies
(score = 8) for the same food group, it was considered to be
the “best” candidate metabolite (i.e., highest score).

Study designs
All articles included in this review identified metabolites
in human samples, and ∼70% of the studies included were
interventional in design (>50% of studies used a crossover
design). Of the 69 metabolites with good evidence, 48 were
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reported in both interventional and observational studies, 20
were found only in interventional studies, and 1 was found
only in observational studies. A crossover design is ideal
for assessing metabolites because participants act as their
own control, which lowers variability due to physiological
variation between individuals, lifestyle factors, and reporting
bias (222). Most of the included interventional studies reflect
short- to medium-term effects of diet or focus on a single
food (e.g., orange juice) or food group (e.g., meats), whereas
observational studies can be more informative because most
have a large sample size (on average, 42 and 922 participants
per interventional and observational study, respectively) and
focus on multiple foods and/or food groups simultaneously.
However, understanding the potential for biomarkers in
observational designs is important because they are most
likely to suffer from biases due to misreporting. Although
we identified several markers in both study designs, there
were a few markers that have not yet been identified in
observational designs, likely due to lack of observational
studies examining these biomarkers. For example, although
our review proposed isothiocyanates as a candidate dietary
biomarker for broccoli consumption, they have yet to be
examined in observational studies to assess their robustness
(223). However, we are confident that isothiocyanates may
serve as a quantitative measure of short-term broccoli
consumption because this biomarker was not associated
with any other commonly consumed food. In contrast, we
are less confident in a biomarker representing a particular
food if that marker is yet to be identified in a free-living
population and is not specific to a food (e.g., hippuric acid,
a candidate marker for green tea, is also shown to be a
candidate marker for fruits in general, fruits and vegetable,
and coffee). In comparison, 3-methylhistidine as a biomarker
for chicken/poultry consumption might serve as a valid
marker for both short- and long-term intake because it
was shown in both interventional and observational studies,
with the conclusion that both study designs will provide
important and unique information necessary to advance
dietary biomarkers research (224).

Metabolomic approaches
Of the 69 metabolites with good evidence, 38 were identi-
fied using both untargeted and targeted approaches. Some
metabolites with good evidence were reported using only an
untargeted approach (n = 9), whereas others were reported
using only a targeted approach (n = 22) that benefits from
the use of validated assays for their quantitative analysis.
Although informative, a drawback of targeted analysis is that
it aims to quantify an a priori known subset of metabolites
that are usually of related chemical structure and/or biologi-
cal activity, and therefore discovery of novel markers cannot
be achieved (8, 225). An untargeted approach provides the
broadest metabolite coverage despite lengthy and complex
post-analytical procedures for data filtering and unknown
identification that are prone to bias or incomplete structural
elucidation if not confirmed by mass spectral comparison
and coelution using an authentic standard. Nonetheless,

there are potentially yet to be discovered metabolites that may
be better indicators for some food groups. For these reasons,
whenever possible, both approaches should be applied.

Analytical techniques
All but 1 metabolite with good evidence (DHPPA for
high-fiber foods—using HPLC without MS) were identified
using LC-MS, 37 were identified using GC-MS, and 17
were identified using 1H-NMR. Likely due to costs, volume
requirements, and throughput constraints, less than one-
fifth of studies in this review employed cross-platform
metabolomic analysis. Moreover, due to the complexity of
the metabolome, it is not possible to analyze every metabolite
present in a biological sample using ≥1 analytical techniques
due to their wide dynamic range in concentration and diverse
physiochemical properties. In addition, many metabolites
are derived from specific foods infrequently consumed in a
population or present at low concentrations below detection
limits, resulting in missing value inputs. For this reason, it is
often necessary to perform sample workup procedures prior
to analysis, such as solvent extractions for sample enrichment
or background matrix cleanup, noting that a nonselective
solvent for sample preparation is preferred for untargeted
approaches, whereas targeted approaches sometimes rely
on sample preparation procedures optimized for specific
chemical groups (226). The results of this review showed that
more than half of the food-specific metabolites with good
evidence were reported using ≥2 independent analytical
platforms with acceptable mutual agreement (bias <10%) in
measured concentrations, such as urinary iodide (227).

Concordance between biological samples
A greater number of studies in this review were based on
the analysis of blood (plasma or serum) than urine sample.
Notwithstanding that 59 of the 69 food metabolites with
good evidence were replicated in both blood and urine
sample, DHA for seafood and fatty fish and catechol sulfate
for coffee were detected only in blood, and dimethylamine
for fish, pelargonidin glucuronide for strawberry intake,
hippuric acid for fruits and vegetables intake, and all four
metabolites for cocoa intake were detected only in urine. The
answer to the critical question of which biological sample
(urine or blood) best characterizes intake of these foods thus
remains unclear, with some evidence suggesting urine to be
the superior biological sample to study nutrient intake or to
identify BFIs (8).

Understanding discordance between biological
samples
Although few studies in this review that had used both blood
and urine samples identified the same metabolites in both
biospecimens (42% of the metabolites with good evidence)
such as acetylcarnitine for red meat, other studies using both
samples did not always find similar results. Typically, urine
samples contain a wider variety of exogenous metabolites
than blood, which may be phytochemicals, xenobiotics,
or chemical byproducts of cooking (8). The nonnutrient
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compounds derived from food intake are converted into
more polar metabolites to decrease their renal threshold and
are thus readily excreted in urine (228). This may explain
why fewer metabolites are more likely to be found in blood—
blood carries many more nonpolar lipids than urine. Urine
is a noninvasive biofluid and less expensive and easier to
collect in repeat measures and large-scale studies (especially
children) than blood for better adherence. In addition, it
reflects a wider range of dietary biomarkers and time window
to assess recent food exposures, so it is often considered
the preferred sample for identification of food metabolites
(22).

The biological variance of metabolites in urine is generally
much greater than in blood and requires adjustment for
hydration status (e.g., creatinine, osmolality, and specific
gravity) when relying on single-point/random collections. In
contrast, 24-h urine sampling is ideal for better assessment
of average food exposures in observational or nutritional
intervention trials, such as DASH-style diets (46), but it
is more difficult to collect consistently in large popula-
tions. Furthermore, excretion site can influence detection of
metabolites. An example of this is the detection of catechol
sulfate after coffee intake in blood but not in urine. Catechol,
a derivative of coffee processing, is conjugated to catechol
sulfate in plasma to facilitate absorption and is generally
eliminated in feces (229).

Finally, it is important to consider the time period during
which the biological sample is collected and the storage
condition of the sample. Most food-specific metabolites
are present in human blood and urine for ∼5–10 h, with
some extending to 48 h (230). Again, whenever possible,
it is recommended to use a 24- to 48-h model in which
multiple biological samples are collected and integrated over
this longer time period to examine change in metabolite
concentration over time or to obtain an average value to
represent “true” concentration. Typically, metabolite concen-
trations change rapidly in blood relative to urine biofluid,
so the use of nonfasting sample adds heterogeneity to the
results, but some biomarkers are best measured postpran-
dially. In addition, another potential influencing factor in
metabolomics may be introduced with improper storage
conditions (i.e., temperature, light, or duration), which
may possibly lead to metabolite degradation or oxidation
such as in the case of PUFAs. There are also concerns of
chemical stability if urine samples are not frozen promptly,
and thus they require the use of preserving agents such
as sodium azide or boric acid to prevent bacterial growth
(231).

Strengths and limitations
A major strength of this review is that it provides a detailed
and concise summary of all nutritional metabolomic studies
reporting metabolites associated with individual foods and
food groups that were conducted in healthy participants.
We also provided a set of objective, transparent criteria for
evaluating repeatability.

However, this review has a few limitations. First, we
focused only on blood or urine metabolites and excluded
studies using other less common biological samples, such as
adipose tissue, feces, breath condensates, and saliva. Second,
we were unable to conduct a quantitative analysis due to
the variability in metabolite targets and approaches among
studies, which makes it challenging to directly compare
metabolite concentrations across studies. In addition, the
variability in the portion size of foods and/or frequency
of food intake (e.g., once compared with repeated) can
impose an important limitation when aiming to synthesize
and integrate results from individual studies. Third, because
the purpose of the review was to rate the evidence of
biomarkers based on repeatability, other validation criteria
(e.g., specificity) were not assessed in this review (223).
Fourth, urine and plasma measured within the same study
were each counted as separate investigations and given equal
weight because the samples were collected independently
with the added advantage for researchers to evaluate whether
either specimen could be used due to sample availability.
For instance, 3-methylhistidine and proline betaine were
consistently demonstrated as robust dietary biomarkers of
a prudent diet in both single-spot urine and fasting plasma
samples collected from the same participants, which were
also associated with self-reported intake of protein and citrus
fruit, respectively (12). However, this may have inflated
the score for some of the biomarkers. Although we strived
toward a reasonable, accurate yet simple score, the score
may be biased by the biomarker’s physicochemical properties
(e.g., detection and concentration, where lower nanomolar–
picomolar metabolites or less readily ionizable compounds
are less likely to be detected and thus identified). Finally,
only a limited number of laboratories have investigated
biomarkers associated with food intake; therefore, we were
unable to examine interlaboratory variability as required for
nutritional epidemiology.

Conclusions
This review has examined and summarized metabolites
associated with all possible food and food groups. The results
show that although many metabolites can be identified from
a specific food, there are many cases in which a single
metabolite is a good indicator of food intake. Findings
obtained from this review have important public health
implications. Dietary advice is an important component of
chronic disease prevention and management. Identifying
good metabolites associated with food intake in generally
healthy populations is an integral step toward examining
diet as a risk factor for chronic disease more objectively
(232). We recommend that future studies validate these
metabolites by using criteria developed by Dragsted and
colleagues (223) that include biological plausibility, dose–
response, time–response, robustness, reliability, stability,
analytical performance, and interlaboratory reproducibil-
ity to further advance the use of BFIs in nutritional
research.
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